A Modular Tide Level Prediction Method Based on a NARX Neural Network

نویسندگان

چکیده

Tide variations are affected not only by periodic movement of celestial bodies but also time-varying interference from the external environment. To improve accuracy tide prediction, a modular level prediction model (HA-NARX) is proposed. This divides data into two parts: astronomical tide-generating forces and nonastronomical various environmental factors. Final results obtained using nonlinear autoregressive exogenous (NARX) neural network combined with harmonic analysis (HA) data. verify feasibility model, under different climatic geographical conditions used to simulate levels, compared those traditional HA, genetic algorithm-back propagation (GA-BP) wavelet (WNN). The show that greater influence meteorological factors on tides, more obvious improvement in stability HA-NARX models, highest 234%. proposed has simple structure can effectively prediction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conjugate gradient based method for Decision Neural Network training

Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...

متن کامل

Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

Neural Network-based Narx Models in Non-linear Adaptive Control

The applicability of approximate NARX models of non-linear dynamic systems is discussed. The models are obtained by a new version of Fourier analysis-based neural network also described in the paper. This constitutes a reformulation of a known method in a recursive manner, i.e. adapted to account for incoming data on-line. The method allows us to obtain an approximate model of the non-linear sy...

متن کامل

Bank efficiency evaluation using a neural network-DEA method

In the present time, evaluating the performance of banks is one of the important subjects for societies and the bank managers who want to expand the scope of their operation. One of the non-parametric approaches for evaluating efficiency is data envelopment analysis(DEA). By a mathematical programming model, DEA provides an estimation of efficiency surfaces. A major problem faced by DEA is that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3124250